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SUMMARY 

The rational selection of an optimal gradient in reversed-phase liquid chroma- 
tography is discussed from two viewpoints. Firstly, a general expression is derived 
for the numerical calculation of retention data for the case when the relationship 
between the capacity factor, k, and the mobile phase composition, Q), is known. For 
a linear gradient a graphical solution is demonstrated and analytical solutions are 
presented for simple but widely applicable k-p: relationships_ Retention data thus 
calcuIated agree we11 with experimental resuhs. 

SecondIy, the multi-component solubility parameter theory is used to predict 
the k-cp relationship. Modification of the stationary chemically bonded phase under 
the influence of the organic modifier is introduced to improve the accuracy of the 
predictions. Empirical correlations using solubility parameters are presented as an 
alternative to the theoretical expressions. 

INTRODUCTION 

Gradient elution in reversed-phase systems using chemically bonded stationary 
phases has become a very important technique in high-performance liquid chromato- 
graphy. Estimates from different worker&’ - indicate that 60-80°A of the separation 
problems described in the literature have been solved in the reversed-phase mode. 
Gradient elution can be used both to extend this number and to improve the separa- 
tions involved. 

The problems encountered in adapting the gradient system to a particular sep- 
aration problem can be broadly divided into two groups. Firstly, there is the selection 
of a suitable organic modifier to be mixed with the polar component of the eluent, 
nearly always water. Secondly, there is the choice of the appropriate gradient (initial 
and final conditions and the transition curve between them). Solution of the latter 
problem is facilitated by a simple expression for the retention time as a function of 
the applied gradient. In this respect, the treatments of Jandera and Chu&elc3 and 
Liteanu and Gocan are less suitable, because their expressions are too complicated. 

l Present address: Koninklijke/Shell Laboratory Amsterdam, Badhuisweg 3, Amsterdam. The 
Netherlands. 
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Abbott et al.’ gave a correct mathematical treatment which was not fully expanded. 
Therefore, an alternative approach is developed in the first part of this paper, resulting 
in fairly simple mathematical relationships, especially for linear gradients_ 

Use of these equations presupposes a knowledge of the capacity factor as a 
function of the eluent composition. Theoretical prediction of this relationship would 
permit a rational selection of the organic modifier, but is a much greater problem_ 
The indicated wide applicability of reversed-phase chromatography has stimulated 
attempts to clarify the retention mechanism of chemically bonded phases. So far, 
these attempts have been only partially successful_ The thermodynamic approach used 
by Locke6 incorporates too many simplifying assumptions to be of general interest_ 
Telepchak’ offered arguments for a mixed adsorption-partition mechanism. Karger 
et a1_8 tried to predict hydrophobic selectivity by usin g a so-called topological index. 
Horvath et al.’ derived an expression for the capacity factor from the solvophobic 
theory of Sinanoglu (cited in ref. 1). The latter was tested, however, on liquid prop- 
erties such as surface area and surface tension rather than on chromatographic data. 

In a previous paperg, we discussed the applicability of the extended solubility 
parameter theory for the description of retention behaviour in various partition 
chromatographic systems. In the second part of this paper, we extend this approach 
to reversed-phase systems usin, (J chemically bonded stationary phases. 

THEORY OF GRADIENT ELUTION CHROMATOGRAPHY 

In this section expressions are derived for the retention time of a solute sub- 
jected to a chromatographic separation with a continuously changing eluent and 
hence a continuously changing capacity factor. For this purpose, we assume that 
the capacity factor is a known function k(v) of the eluent composition, denoted by 
the volume fraction, Q;. of the less polar component. 

The solvent delivery system imposes a gradient which, as a function of time 
(t), can be formulated as 

If this gradient is transported unchanged through the chromatographic system, it 
reaches the sample introduction point after a delay time t and the position z in the 
chromatographic column after a further period of Z/ZI, where u is the velocity of the 
mobile phase. Hence ar time t the solvent composition at z is given as 

p(z,t) = f(t - t - t) 

Introduction of the inverse function f-*(q) then yields 

0) 

t = t + -5 f f-l@) 
u 

Oi 

dt = $ + d[f-l(q)] (4) 
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The solute migration velocity at positior z and time t is given by 

v(q) = u dz . . 

1 -t-k(v) = dr 

Substitution of dt from eqn. 4 into eqn. 5 gives 

d[f- ‘(vll d.z 
k(q) = 1( (6) 

Now we introduce the usual chromatographic practice that at time t = 0 the sample 
is introduced at z = 0, after which the gradient programme is started immediately. 
Consequently, until the solvent change overtakes the solute, i.e., at t = t f z/u, or 
in terms of eqn. 3 for negative values of the inverse function f-‘(v), the solvent in 
the column retains its initial composition so that k(v) = k(a). Further, with - running 
from 0 to the column length L, the time varies between 0 and the retention time 
rR, so f-‘(v) varies between --t and t, - tm - t = t; - t. Imposing these bound- 
aries, eqn. 6 can be integrated to give 

_J ’ dlf-'(g?)l 
_fR -T 

&a) +- 0 J dCf-'WI 
k($u) = n s Ldz 

II = lrn (7) 

or 
I 

ZR--T 

s W-‘(F)1 = t -__ 
4P) #7x 6) (8) 

.a 

This is a basic integral equation for gradient elution, from which the retention time 
can be calculated numerically for any gradient, provided that k(q) is known. Almost 
any practical gradient can be described to a good approximation by 

Q) = f(t) = CI + &” (9) 

so that 

t = f-‘(y) = (?)I’. (10) 

and 
l--n 

d[f-WI = A(y) n dp7 (11) 

Substituting into eqn. 8 and considering that Q, varies between a and a + b(tk - t)“, 
we find 
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The special case of a linear gradient results when we substitute n = 1: 

t 
--- 

k (4 

(13) 

Clearly, both eqns. 12 and 13 can be solved by numerical integration for any k(v)_ 
In the important case of a linear gradient, analytical solutions of eqn. 13 can be 
formulated for a few simple relationships between the capacity factor (k) and the 
mobile phase composition (9) Table I presents analytical solutions for three situa- 
tions : 

(i) a linear relationship between k and q, which will hardly ever be observed 
in practice; 

(ii) a linear relationship between In k and 9, which has been frequently as- 
sumed in the literature and may be valid over a restricted range of mobile phase 
composition ; 

(iii) a quadratic relationship between In k and Q?, which will be shown below 
to provide an accurate description of many experimental data. 

In deriving eqns. 12 and 13, it has been assumed that all solutes are eluted 
from the column before the gradient programme reaches its final composition (at 
the column outlet)_ In practice, this is not always observed, so that eqn. 12 must 
be modified to allow for this. The integral must be split into two parts: one running 
from an initial composition v = a to a final composition v = y with variable k(v) 

and the other running from v = y to 47 = a + b(rk - t)” with constant k(y). Con- 
sequently, eqn. 12 becomes 

l--n 

(14) 

from which the equivalent expression for a linear gradient can again easily be found 
and solved analytically for the k(q) relationships considered above. The results are 
included in Table I. In order to avoid unnecessary lengthy calculations, it is recom- 
mended that the retention time should first be calculated from the expressions in the 
top section of Table I. If it then appears that tk > z t- (y - a)/& this means that 
the solute elutes from the column after the gradient programme has been run to 
completion. If so, the correct result should be calculated from the appropriate ex- 
pression in the bottom part of Table I. 

In addition to the numerical calculation of retention times from eqn. 13 for 
arbitrary k(v), Fig. 1 presents a simple graphical solution of this problem based on 
eqn. 13_ In a plot of l/k(q) YC~.SUS the solvent composition (q), the initial composition 
(a) is easily identified. According to eqn. 13, we must select an area under the curve 
equal to 6[r,,, - t/k(a)], and this area is reached at position 9 = a f b(tk - t), from 
which the desired retention time, tk, can then be derived. Elution after completion 
of the gradient programme is easily allowed for by keeping I/k constant for q > y. 
This graphical solution is less accurate but also much easier than numerical calcula- 
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Fig. l_ Solution of the retention equation for a linear gradient (eqn. 13) by graphical integration fat 
two solutes. 

\ 

lions, especially if several solutes are involved. Moreover, the ratio of the projections 
p and 4 on the p-axis, including a small correction for btfk(a), is equal to the relative 
retention Q = k2/k1 (see Fig. 1). 

Predictions of k(g5) by the solubility parameter theory 

The expressions for gradient elution in Table I will be even more useful if 
the relationship between k and v can be predicted theoretically. In a previous paper’ 
we discussed the possibilities of the extended solubility parameter treatment for the 
description of retention behaviour in partition chromatographic systems. The ap- 
propriate expression is 

2 so.i C60.s - ‘O*IYl) + 2 sd.i (dind.s - a.ind,m) t 2 d,_i (db.s - dbarn) + (15) 

2 L (s,., -4,.m)l + InV,/V,) -k wz(l/v, - l/v,) 

In this expression, the subscripts m, s and i refer to the mobile phase, the stationary 
phase and the solute, respectively_ &, a,, c?,~, 6, and 6, are the partial solubility 
parameters for dispersion, orientation, induction, acid and base interactions, re- 
spectively, which together determine the total solubility parameter, &. Finally, w is 
the molar volume and V is the phase volume. 

Eqn. 15 differs slightly from the expression presented previously’ because it 
includes the induction parameter Bznd as defined by Keller et aLlO_ A major practical, 
although not principal, objection to the solubility parameter theory is the need for 
very accurate values of all partial parameters. The determination of dispersion and 
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acid-base parameters was discussed previously9. The subdivision into induction and 
orientation parameters can be achieved by the use of the internal pressure according 
to Scigliano”. 

The application of eqn. 15 to the prediction of elution on chemically bonded 
phases is confronted by three problems. Firstly, in realistic reversed-phase systems 
water is used as the polar component. Unfortunately, water behaves so uniquely that 
it is difficult to describe in terms of solubility parameters. Nonetheless, Kirchnerova 
and Cave’* and Arro and Melder13 have recently successfully applied the solubility 
parameter theory to aqueous systems. 

A second problem is the fact that chemically bonded phases may not have 
the properties of bulk phases for which the solubility parameter theory has been 
derived. It is more likely that they constitute an interfacial layer between the mobile 
phase and the silica support material. As will be shown below, this problem can be 
reduced by assuming that the effective properties of the stationary phase change with 
the composition of the mobile phase. 

A third important problem is the description of the solubility parameters for 
mixed solvents. After Hildebrand and Scott 14, for a mixture of two liquids, p and 
q, we use 

6 2-m = (1 - 93 h-.p i ph., (16) 

where as before y is the volume fraction of the less polar component (q). Although 
experimental measurements” indicate a slightly non-linear relationship between the 
total solubility parameter and the solvent composition, eqn. 16 has been used suc- 
cessfully by Chao and co-workers 16*17 for the prediction of the vapour pressures of 
mixtures of weakly polar compounds. Therefore, it seems a valid approximation for 
non-polar compounds where only dispersion forces are active. Hence, 

s d.m = t1 - e) 6d,p t +d,q (17) 

For simplicity, we assume that expressions similar to eqn. 17 are valid for all partial 
polarities. This assumption will be more questionable for increasingly polar inter- 
actions. Especially for a mixture of an acid and a base it is hardly to be expected 
that acid and base parameters can be described adequately by eqn. 17, because some 
compensation by “neutralization” must be expected. For the molar volume of the 
mobile phase, we used 

?&=(l -x)VP+xxz)q (18) 

where x is the molar fraction of q_ 
Substitution of expressions similar to eqn. 16 and 17 into eqn. 15 now yields 

an expression for the capacity factor as a function of the mobile phase composition 
(v) of the general form 

In k = A’$ + B’tp + C’ i- D’@) W) 

where D’(q) is the size correction term based on the Flory-Huggins expression9~18-z0. 
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Resulting expressions for D’(q) as well as for A’, B’ and C’ are presented in Table 
II. As will be discussed later, these equations do not give a good description of the 
experimental data. Evidence can be found for at least a certain amount of stationary 
phase modification_ 

The effective properties of the stationary phase vary with the mobile phase 
composition, probably owing to preferential adsorption of the organic modifier at 
the non-polar surface. If such preferential adsorption takes place to a large extent, then 
we might expect a distribution over two similar phases when the mobile phase con- 
sists of 100°/O modifier. This means a partition coefficient of about 1 for all solutes 
and consequently no selectivity. Qualitatively, this conclusion agrees reasonably well 
with practical experience (e.g., see Fig. 3). To investigate this phenomenon, we as- 
sume a linear variation of the effective stationary phase properties with the volume 
fraction of the organic modifier: 

6 7:: = (1 - cp) 6T.s f 47 &-.a (20) 

and similar expressions for V, (using x instead of v) and all partial polarities. The 
expressions resulting from substitution in eqn. 15 are given in TabIe II and are denoted 
by A”, B”, C” and D”(v) according to 

Ink = A”# f B”cp f C” f D”(y) (21) 

Before discussing the applicability of this approach, it is important to note that eqn. 
19 predicts that the expression for the capacity factor is the sum of a quadratic and 
a hyperbolic function D’ or D” of q_ In general, the hyperbolic term is not negligible 
in comparison with the quadratic term, but over the complete range of 0 < q < 1 
it can be described to a good approximation by a quadratic function of v_ More- 
over, if there is no stationary phase modification the hyperbolic function simplifies 
to a linear function_ Therefore, we can write 

D’W = 8’9 f y’ (22) 
and 

D”(q) = n”pj’ f /Yp, +- y” (23) 

So with eqns. 19 and 21, 

In k = A’gj2 _t (B’ i_ 8’) q~ j- (C’ + y’) (24) 

when no stationary phase modification is assumed or 

In k = (A” + a”) 92 + (B” f 8”) Q, + (C” + f) (25) 

when there is modification of the stationary phase. Both eqns. 24 and 25 lead to a 
quadratic form for k(q): 

(26) 
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This expression is borne out in practice, as shown in Table III and by the examples 
beIow in Figs. 2 and 3. This supports our earlier remark that Ink is a quadratic 
rather than a linear function of the eluent composition, v. 

EXPERWENTAL 

The chromatographic equipment consisted of two M 6000 A pumps coupled 
via a Model 660 solvent programmer and a U6K sample injector and a UV detector 
(all from Wafers Assoc., Milford, Mass., U.S.A.). Columns of I.D. 4 mm and length 
10 cm (30 cm for methanol-water) were slurry packed with LiChrosorb RP-18 (Merck, 
Darmstadt, G.F.R.). Reagent-grade methanol, ethanol and n-propanol from J. T. 
Baker (Phillipsburgh, N-J., U.S.A.) and specially distille- 4 water were used as soIvents. 
High-purity solutes were dissolved in pure organic modifier and 5~1 samples were 
injected on to the column. The detector output was coupled on-line to a PDP 1 l/45 
laboratory computer with samplin, * frequencies up to 5 HZ. The peak positions of 
the eluted solutes were determined from the first statistical moment of the digitized 
chromatogram. 

RESULTS AND DISCUSSION 

Prediction of retention and separation 
The In k versus q curves were measured for sixteen solutes using either methanol 

or ethanol as the organic modifier. Six solutes were also measured in mixtures of 
n-propanol and water at four different temperatures. A solution of potassium di- 
chromate in water was used to determine the mobile phase time, t,,,_ Representative 
examples are shown in Figs. 2 and 3. The solid lines drawn through the data points 

fn k 

t 
10 

Fig. 2. Relationship between the capacity factor and the mobile phase composition for phenol using 
different modifiers. e, Methanol; 0, ethanol; i, n-propanol. 
Fig. 3. Relationship between the capacity factor and the mobile phase composition for several solutes 
in the methanol-water system. *, m-Cresol; e, 2,44meth~lphenol; +, aniline; 0, diethyl phthalate: 
&-. dibuty1 phthalate. 
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represent best fitting quadratic curves, from which the coefficients A, B and C in 
eqn. 26 were derived. The complete results are collected in Table III. The standard 
deviations given indicate the error that might be expected in capacity factors cal- 
culated from the quadratic expression. Since the standard deviations are usually very 
low, the fitted curves match the experimental data very well, as can also be seen 
from Figs. 2 and 3. However, no experimental data were obtained for very large 
values of k, so that the standard deviations given do not represent the possible error 
in calculated In k-values of 100 or more (In k >, 5). This can most easily be illustrated 
from the C-values given in Table III. 

The C-coefficient in eqn. 26 equals the retention for y = 0, i.e. for pure water. 
Therefore C-vaIues for the same solute from different series of experiments using 
different organic modifiers should be the same. This proves to be correct in most 
cases, certainly when one consideres the differences in chromatographic conditions 
and coIumns for the different modifier systems. High C-values are inevitably found 
by extrapolation, which becomes more uncertain for higher values. This is indicated 
by the C-values for benzophenone and dibutylphthalate from the methanol-water 
and ethanol-water systems, showing differences of factors 10 and 103 respectively. 
All coefficients will tend to be more accurate when more experimental data points 
are available, in other words when the C-value is lower. In all cases however, k- 
values up to 100 can be calculated with good accuracy and higher values are of very 
little significance for chromatographic elution. Re-calculated data from the litera- 
tnre*PP also result in quadratic dependences, although this was not recognized by 
the authors concerned. The commonly suggested linear relationship between In k and 
9 appears to be a useful approximation for only a limited number of systems or 

Fig. 4. Comparison of experimental retention data (broken lines) with those calculated from Table I 
(solid lines), using the equations for the quadratic form. Compounds: 1, m-cresol; 2, 2,44imethyl- 
pheno1. 
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over a restricted range of solvent compositions. This means that for the general situa- 
tion, the retention time in linear gradient elution chromatography could be calculated 
from the quadratic expressions in Table I. 

The fairly complicated expressions may be avoided by using the graphical or 
numerical alternatives discussed above. Obviously, for non-linear gradients, nu- 
merical integration of eqn. 8 is the only possibility_ The accuracy of the calculated 
retention times can be judged from Fig. 4, where the calculated data for two solutes 
are compared with practically measured net retention times. The systematic devia- 
tion is due to an uncertain delay time, t, rather than to the caIculation procedure_ 
Obviously, the retention time of both solutes decreases strongly with increasing initial 
amount of organic modifier, CI, but the separation factor, (z, is seen to reach a maximum 
value at Q = 0.65. 

More extensive calculations using the coefficients for the quadratic form from 
Table III are presented in Figs. 5 and 6. Again the retention times decrease rapidly 
with increasing initial amount of organic modifier, a, and with increasing gradient, 
6 (Fig. 5). More important, however, is the optimum in the separation factor that 
shifts towards higher values of a with increasing slope, 6, of the gradient (Fig. 6). 
This means that for a given analysis time the separation becomes better with de- 
creasing gradient. Also, the initial amount of organic modifier should not be taken 
too low. Indeed, Fig. 4 shows that for small values of CI the separation of two solutes 
takes a lon_g time and is incomplete_ At too high a value of a the separation is very 
rapid, but also incomplete_ Good separation within reasonable time is obtained at 
Q = 0.6 for the two soIutes in the present example. 

linear gradient 

2- 

u 

b=l%.min-’ 

1 0 -a 
water methanol water 

Fig. 5. Calculated net retention times for nr-cresol, applying a linear gradient. 

Fig. 6. Calculated relative retentions applying a linear gradient. 

met1 

Prediction 01~ the relationship between in k and v 
Now that the quadratic relationship between In k and y predicted from the 

solubility parameter approach has been borne out in practice, we turn our attention 
to the calculation of the coefficients A, B and C in eqn. 26 from the solubility pa- 
rameter expressions. Some representative results are given in Table IV, where the 
calculated coefficients are compared with the experimental values taken from Table 
III. 
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The first entries in the tables refer to coefficients calculated from the expres- 
sions at the top of Table II. Here the solubility parameters of the mobile phase are 
continuously changed according to the mixing rules (eqns. 16 and 17), but the sta- 
tionary phase is kept invariable. The size correction term, D’(q), for the unmodified 
stationary phase, based on the Flory-Huggins theory, is a linear expression and the 
respective coefficients 8’ and y’ were added to the corresponding coefficients B’ and 
C’ to yield estimates for B and C (eqns. 22 and 24). For the case of a modified sta- 
tionary phase, the size correction term, D”(q), is approximated by the best quadratic 
fit (eqn. 23) and A”, B” and C” are corrected according to eqn. 25. Although in all 
instances the signs of the coefficients are predicted correctly, there is a large difference 
with experimental data. To gain insight into the retention process, we determined 
the enthalpy and the entropy contributions to In k separately from plots of exper- 
imentally measured values of In k wrsus the reciprocal temperature, l/T. A repre- 
sentative example is shown in Fi,. = 7, which shows that the entropy reaches a minimum 
at v = 0.5, where the enthalpy term goes through a maximum at v = 0.2. For other 
solutes the latter maximum was found to be at variable v values between 0.2 and 
0.6. Both the enthalpy and the entropy terms can be well fitted with a quadratic 
function of 9, so that also the total In k ~wsz~s rp curve follows this ‘behaviour. The 
expressions at the top of Table II are based on the solubility parameter theory, which 
makes it tempting to equate the enthalpy term with A’$ -i B’cp + C’ and to equate 
the entropy term with D’(g;). However, closer inspection of Table II indicates that 
this cannot be a viable proposition. Because A’ in Table II is always positive, the 
enthalpy term thus calculated must pass through a minimum rather than show a 
maximum as observed in Fig. 7. In general, this minimum is situated outside the 
physically meaningful range of 9 (usually at 47 > 1). Alternatively, the Flory-Huggins 
size correction term, D’(v), in Table II, will never show a minimum as observed 
experimentalIy for the entropy term. In view of the small moIar volume of water, 
D’(y) and D”(y) generally increase steadily over the entire range from q = 0 to 1. 

Fig. 7. Experimental enthalpy and entropy functions for phenol in the tz-propanol-water system. 
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In principle, the observed variations of the enthalpy and the entropy might 
be explained if in addition to a variation of the mobile phase, we assume that the 
eiTective parameters of the stationary phase also change with varying content of or- 
ganic modifier. Arguments for such a modification have been advanced in the the- 
oretical section. In that case, the enthalpy term is calculated as the difference of two 
concave quadratic forms: one for the mobile phase interaction and one for the sta- 
tionary phase interaction with the solute. Such a difference might well show a max- 
imum. In a similar way, the entropy term, which is a difference between two size 
correction terms, might show a minimum. This approach leads to the expressions 
at the bottom of Table II and the coefficients calculated from these expressions are 
collected in Table IV. 

Although it is clear that in comparison with the unmodified stationary phase 
the values of the coefficients A, B and C change in the correct direction, the change 
is generally too small to provide a reasonable description of the experimental data. 
Therefore, we are forced to conclude that the best estimates of the partial solubility 
parameters presently available do not provide a quantitatively correct prediction of 
the retention behaviour in gradient elution chromatography using chemically bonded 
phases. The calculations also show that for the systems presently considered it is 
probably not permissible to use the regular solution concept to write down separate 
theoretical expressions for enthalpy and entropy contributions. A similar conclusion 
has already been drawn by Hildebrand and Scott”. 

A major reason for the limited success of the solubility parameter approach 
in reversed-phase systems is the need for accurate data on the highly polar mobile 
phase component, water. The solubility parameter theory has always been more suc- 
cessful with non-polar or only slightly polar components. However, the multi-pa- 
rameter regression analysis described in a previous paper’ enables us to derive effective 
values for the solubility parameters of water. To this end, retention data for sixteen 
components in methanol-water and ethanol-water mixtures were used to find em- 
pirical relationships for the coefficients A *, B* and C*. This approach is based on 
the expressions at the bottom of Table II using the data for water as an unknown 
parameter to be fitted to the experimental data. In this way, the following empirical 
relationships were obtained : 

A* = 0.037 7~~ for methanol; 
A* = 0.046 uI for ethanol; 
B* = 3.38. 1O-3 vL (7.186,., + O-99&, i- 1.006,.1 - 0.126,_i - 1.36&,{ + 

+- 0.91v, - 178.35) 

where 6,*, = 15.85 and vq = 40.41 for methanol and fir,, = 13.65 and vu, = 58.37 
for ethanol ; 

C* = l-69- 10d3 Vi (17.886d.i - 4.826o.i - 3.266a.i - 0.446b.i - 105.66) 

where the asterisks denote the empirical nature of the expressions. The accuracy of 
the predictions afforded by these equations is illustrated in Fig. 8, where for the sixteen 
solutes considered the empirically predicted values of A*, B’ and C* are compared 
with the experimental values of A, B and C. Of course, it should be pointed out 
that the same substances were used to formulate the empirical relationships. It is clear, 
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however, that within the set of sixteen substances considered there is a general con- 
sistency. This is also illustrated by the last entries in Table IV, where the empirical 
predictions of A*, B* and C* are seen to agree much more closely with the experi- 
mental data than either of the theoretical predictions_ This means that usin,g the 
empirical correlations, the retention behaviour of the sixteen solutes can be predicted 
reasonably well. Absolute retention data on other compounds can be predicted within 
a factor of 3, but the calculated relative retentions on a few preliminary experiments 
and literature data demonstrate that for these other solutes (not included in the re- 
gression analysis) the calculated relative retentions are usually more accurate. 

Fig. 8. Calculated versus experimental valJes for the coefficients (a) A*. (b) B* and cc) C* from the 
empirical correlations. (a) 9, Methawl; 0, ethanol. 

CONCLIJSION 

The mathematical model described enables us to make a good estimate of 
chromatographic retention data, provided that the relationship between In k and q~ 
is known. The solubility parameter theory suggests a quadratic form for this rela- 
tionship, and this appears to be borne out in practice_ A priori prediction of the 
coefficients in the quadratic expression have yielded insufficient results so far. Ex- 
perimental data show that a separation into an enthalpic contribution described by 
solubility parameters and an entropic contribution described by the Flory-Hugins 
theory is not justified. These entropy and enthalpy data suggest modification of the 



536 P. J. SCHQENMAKERS et al. 

stationary phase by the organic modifier in reversed-phase systems. As long as no 
accurate theoretical predictions of the k(q) relationship are possible, empirical cor- 
relations might be used with some success. 

SYMBOLS 

4 B, c 

E 
-Q(9) 
f-0) 
k 
L 

: 
T 
t 

trill 
tR 
tk 
II 

V 

coefficients in the quadratic expression for k(q) 
initiai mobile phase composition (volume fraction 
gradient slope (mm-’ in case of a linear gradient) 
size correction term 
gradient curve function 
capacity factor 
column length (cm) 
exponent in gradient curve function (eqn. 9) 
gas constant (I? = 1.9865 Cal- mol-’ - “K-r) 
absolute temperature (“K) 
time (mm) 
mobile phase tune (min) 
retention time (min) 
net retention time (min) 
mobile phase velocity (cm/min) 
phase volume (cm3) 

solute migration velocity (cm/min) 
molar volume (cm3/mol) 
final mobile phase composition (volume fraction units) 
distance along column axis (cm) 

a relative retention (a = t&/tk.J 

a9 A Y coethcients describing the size correction term D(cp) 
b solubility parameter (cal/cm3)’ 
t gradient delay time (min) 

e) volume fraction of modifier 

units) 

subscripts 

E 
acid 
base 

d dispersion 
i solute 
;n -d induction 
m mobile phase 
0 orientation 

P weakest eluting mobile phase component 

4 modifier (strongest eluting mobile phase component) 
s stationary phase 
T total 
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